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• Thermodynamics agree with theory 
under the high energy dissipation 
hypothesis. 

• Five kinetic models on SO-NR processes 
were compared to describe PAD 
performance. 

• Satisfactory capacity to simulate nitrite 
accumulation for 3 out of the 5 models. 

• NO2
− accumulation well modelled 

through Monod and Haldane kinetics for 
NO2

− uptake. 
• Haldane showed higher parametric 

identifiability allowing for further 
model simplification.  
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A B S T R A C T   

In the present study, the stoichiometry of the Sulphur Oxidizing-Nitrate Reducing (SO-NR) process, with a focus 
on Partial Autotrophic Denitrification (PAD), has been evaluated through a thermodynamic-based study whereas 
a model-based approach has been adopted to assess process kinetics. Experimental data on process performance 
and biomass yields were available from a previous work achieving efficient PAD, where a biomass yield of 0.113 
gVSS/gS was estimated. First, the free Gibbs energy dissipation method has been implemented, in order to 
provide a theoretical framework exploring the boundaries for sulphur oxidizing biomass yields. Second, a 
screening of available mathematical models describing SO-NR process was conducted and five published models 
were selected, in order to assess the most suitable model structure for describing the observed PAD kinetics. To 
the best of our knowledge, none of reported biomass yields are estimated in systems operating PAD as the main 
process and, analogously, none of the proposed models have been applied to case studies aiming at partial 
denitrification only. The work showed that the very low biomass yield of 0.117 ± 0.007 gVSS/gS, observed in a 
PAD system in our previous work, suggests that the conditions applied to achieve partial denitrification resulted 
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in a high energy-dissipating metabolism compared to complete denitrification applications. Models’ analysis 
revealed that nitrite accumulation can be described by a classical Monod kinetics if different μmax are adopted for 
each intermediate reaction, with Theil Inequality Coefficient values lower than 0.21 for both NO3

− and NO2
− . 

Nonetheless, adopting Haldane-type kinetics for nitrite uptake inferred higher identifiability to the model 
structure, resulting in confidence intervals below ±10% for all the parametric estimations. The thermodynamic 
and modelling outcomes support the experimental results obtained in the reference study and the critical 
comparison of model suitability to represent PAD process is believed pivotal to pave the way to its real-scale 
implementation.   

1. Introduction 

Sulphur Oxidation-Nitrate Reduction (SO-NR) is a complex process 
carried out by Sulphur Oxidizing Bacteria (SOB) and characterized by 
peculiar aspects such as: (i) multistep reactions involved both for elec
tron acceptor reduction and electron donor oxidation; (ii) high chemical 
reactivity of reduced sulphur compounds, such as sulphide and thio
sulphate; (iii) variety in microbial population able to mediate SO-NR 
reactions, from strictly to facultative anaerobic and from chemo
lithotrophic to mixotrophic cultures (Madigan et al., 2019), being Thi
obacillus and Sulfurimonas the most abundant and dominant genera in 
aerobic and anoxic sulphur oxidation applications (Mora et al., 2014). 
Both sulphide oxidation and nitrate reduction are typically described as 
two-step processes, resulting in the possible combination of electron 
acceptor/electron donors described in equations (1)–(4) (see Table S2 
for the solved catabolic reactions) even though the actual reactions 
involve several other intermediates. 

HS− + NO−
3 +H+ → S0 + NO−

2 + H2O Eq. (1)  

HS− + 0.67 NO−
2 + 1.67 H+ → S0 + 0.335N2 + 1.335H2O Eq. (2)  

S0 + 3 NO−

3 +H2O → SO2−
4 + 3 NO−

2 + 2 H+ Eq. (3)  

S0 + 2 NO−

2 → SO2−
4 + N2 Eq. (4)  

In the last decades, the SO-NR process has received increasing attention 
as a sustainable solution to effectively remove nitrogen from streams 
with a low C/N ratio. Thus, it has been successfully applied in treating 
groundwater, secondary effluent of municipal wastewater, drinking 
water, mariculture wastewater (Wang et al., 2023), municipal tailwater 
(Li et al., 2023) and landfill leachate (Zhang et al., 2023). Furthermore, 
the coupling of this process with C removal has been successfully 
implemented in full scale facilities (SANI® process, Wu et al., 2016), as 
well as H2S removal from gaseous streams such as biogas (Baspinar 
et al., 2011). More recently, innovative solutions are promoting the 
integration of gaseous and wastewater biological treatments, such as the 
integrated nitrogen and sulphur removal combining the anammox pro
cess and the sulphide-driven partial autotrophic denitrification, PAD 
(Chen et al., 2019). Such an integrated process can offer an appealing 
application in the treatment of wastewater side-streams generated by 
anaerobic digestion, typically highly rich in reduced forms of nitrogen, 
as well as in the H2S removal from biogas. Even though successful PAD 
has been presented in recent studies using elemental sulphur, thio
sulphate or sulphide as electron donor (Chen et al., 2018; Deng et al., 
2022; Polizzi et al., 2022), the comprehension of the mechanism un
derlying successful nitrite accumulation and the consequent operational 
strategies to be applied are still object of discussion. 

The complexity of SO-NR process is reflected in the different, and 
sometimes contradictory, results that can be found in the literature on 
the favoured electron acceptor between nitrate and nitrite as well as the 
observed biomass yields. For instance, some authors indicate nitrate as 
the preferred electron acceptor when coupled with sulphide oxidation 
(Campos et al., 2008; Guo et al., 2016), whereas other works report 
nitrite instead (Cui et al., 2019). Biomass cultivation mode (e.g., sus
pended or granular systems), operational conditions (e.g. SRT, S/N 

ratio) and biomass adaptation also affect observed uptake rates and 
stoichiometry. SOB biomass yields are reported in the range of 0.1–0.4 
gVSS/gS (see Polizzi et al., 2022). Due to the complexity of the possible 
reaction combinations, solving the full stoichiometry is not a trivial 
exercise (Klatt and Polerecky, 2015). When dealing with complex pro
cesses, mathematical models are an effective tool for gaining insight into 
the mechanisms underlying processes’ response under different opera
tional conditions. The models proposed in the literature for the 
description of SO-NR process mainly differ for the following character
istics: (1) one or two-step reactions are presented for the oxidation and 
reduction semi-reactions; (2) Monod kinetics are typically assumed for 
NO3

− and S0 uptake while both Monod or Haldane kinetics are encoun
tered for HS− and NO2

− uptake; (3) switch functions are sometimes 
included in order to elicit the preferred uptake of one electron acceptor 
(or donor) or the other, in case multistep reactions; (4) kinetic param
eters, in terms of maximum growth rate and/or half saturation co
efficients, are either assumed having the same value in all reaction steps 
or different values for each reaction step. As a consequence, the 
complexity and the consequent number of parameters required by 
models can vary significantly. 

In the present work, an integrated approach based on a thermody
namic study and mathematical modelling is proposed to gain insight, 
respectively, on the stoichiometry and kinetics of SO-NR, with special 
focus on the novel process of PAD. The work by (Polizzi et al., 2022) is 
selected as the reference study for successful PAD implementation. The 
first aim of the work is to present a theoretical framework for the 
biomass yields through a thermodynamic study, offering a critical 
comparison with experimental stoichiometric values observed in the 
literature on SO-NR systems as well as those estimated in the reference 
study on PAD. The second purpose is to achieve a mathematical repre
sentation of the observed nitrite accumulation kinetics: five models 
available in the literature were selected and studied through a sensitivity 
and identifiability analyses, in order to assess their suitability for the 
representation of the observed data. To the best of our knowledge, none 
of the reported biomass yield is estimated in a system operating PAD as 
the main process and, analogously, none of the proposed models have 
been applied to case studies aiming at representing partial denitrifica
tion only. 

2. Material and methods 

2.1. Experimental dataset 

Data from (Polizzi et al., 2022) were considered both for the ther
modynamics and modelling tasks. In the mentioned publication, suc
cessful partial denitrification (i.e., nitrite accumulation) was achieved in 
a chemostat under sulphide-limiting conditions. During stable opera
tion, three operational phases were tests adopting SRT values in the 
range of 13–44 h and influent S/N within 0.65 and 0.95 gS/gN. Nitrite 
conversion rate, calculated as the nitrite production over the removed 
nitrate, was above 70% at all the applied conditions, with peaks close to 
100%. The observed biomass yield was estimated at 0.117 ± 0.007 
mgVSS/mgS. Microbial community analysis revealed that a clear pop
ulation shift occurred: Sulfurimonas was the dominant genus in the 
inoculum (97% of relative abundance) and was almost completely 
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replaced by Thiobacillus (83% of relative abundance) after 80 days of 
operation. As reported in the work, S0 was not measured but rather 
estimated, with a 10–30% error on S mass balance, depending on the 
operational phase. In Table S1 of the supplementary material, the main 
operational conditions are summarized for each phase. For the model
ling purpose, phase 1a was removed from the experimental dataset since 
the system had not reached stable conditions. 

2.2. Thermodynamic study 

The free Gibbs energy dissipation method formulated by (Heijnen 
et al., 1992a) and further generalized by (Kleerebezem and Loosdrecht, 
2010), was used to estimate theoretical biomass yields for the different 
reaction steps involved in SO-NR, based on sulphide and elemental 
sulphur as electron donor and nitrate/nitrite as electron acceptor. 
Catabolic stoichiometry was solved for all the intermediate steps 
involved in SO-NR: both oxidation and reduction reactions were 
simplified in a 2-step reaction and no other intermediary products were 
considered except sulphur and nitrite, respectively. According to 
(Heijnen et al., 1992a), energy dissipation (ΔGdis) in autotrophic 
metabolism appears strongly dependent on the fact that bacteria utilizes 
or not the reverse electron transport (RET) mechanism. Chemo
lithotrophic SOB are reported to adopt RET for C fixation but defining if 
and how efficiently bacteria adopt RET is not always straightforward 
since many metabolic mechanisms remain unclear (Klatt and Polerecky, 
2015; Lin et al., 2018; Madigan et al., 2019; Yavuz et al., 2007) have 
applied the free Gibbs energy method to estimate the theoretical 
biomass yield of SOB, under the assumption that a highly 
energy-requiring RET mechanism was required for biomass synthesis, 
assuming ΔGdis = 3500 kJ/C-mol. Results from (Yavuz et al., 2007) have 
been used by (Can-dogan et al., 2010; Mora et al., 2015a) to support 
their experimental results. On the other hand, (Kleerebezem and Men
dez, 2002) have compared the biomass yield obtained in their 
SOB-based work with values reported in literature. A total of 8 studies 
were reviewed, adopting mainly thiosulphate as electron donor but also 
sulphide and elemental sulphur; literature biomass yields were then 
used to derive overall metabolic energy dissipation, by applying the free 
Gibbs energy method in a bottom-up approach, and energy dissipation 
was estimated to be around 1500 ± 600 kJ/C-mol. Even though the 
standard deviation was as high as the 40%, the confidential interval falls 
below the value of 3500 kJ/C-mol, suggesting a more efficient energy 
uptake. 

In the present work, full stoichiometry has been solved for all the 
possible reaction steps occurring in SO-NR, under the following two 
scenarios: 

Energy dissipation, EDiss  

1. EDiss_1 ΔGdis = 3500 kJ/C-mol;  
2. EDiss_2 ΔGdis = 1500 kJ/C-mol (average value from Kleerebezem 

and Mendez, 2002) 

Another aspect discussed in this section is the biomass formulation 
used in the stoichiometries available in literature. Some studies report a 
C-mol formulation of CH1,8O0,5N0,2 as reported by Roels (1983); some 
others a 5C-mol formulation of C5H7O2N (Rittmann and McCarty, 
2001). Normalizing the second formulation to one C-mol, biomass 
stoichiometry results in CH1,4O0,4N0,2, slightly different for H and O 
fractions. The presented methods and hypotheses have been applied to 
both of the biomass composition (BC): BC_1: CH1,8O0,5N0,2 (Roels, 
1983) and BC_2: CH1,4O0,4N0,2 (normalized to 1 C-mol from Rittmann 
and McCarty, 2001). 

As general assumptions, one single SO-NR biomass is assumed for all 
the possible reactions, CO2 (as HCO3-) and NH4+ are considered as C 
and N source, respectively. The derived theoretical biomass yield was 
conducted and compared with literature values. 

2.3. Model selection 

A bibliographical research was conducted in order to screen out the 
various approaches adopted in mathematical modeling of autotrophic 
denitrification rates, with the final aim of assessing their capability of 
simulating the experimental data on nitrite accumulation presented by 
(Polizzi et al., 2022). 

In order to establish a common ground among the available publi
cations, only the works matching the following criteria were considered: 
1) processes were modelled through rate-limited reactions, i.e. no mass 
transport limitations; 2) SO-NR was modelled through the four main 
steps presented in equations (1)–(4), referred to as process 1, 2, 3 and 4, 
herein; 3) one single biomass was considered for all the reactions; 3) 
operational conditions were in the typical/optimal ranges of pH and 
temperature for autotrophic denitrification processes (7–8 and 
22–30 ◦C, respectively, according to (Deng et al., 2021)). Five models 
were selected, and special attention was devoted to the kinetic functions 
and parameters regulating uptake rates among the different reactions, in 
each model structure. Specifically, the following aspects were analyzed:  

- Substrate uptake kinetics: Monod-type vs Haldane-type; 
- Half-saturation coefficients: same value assumed for a given sub

strate in all the processes vs different values depending on the 
process;  

- Maximum growth rates: same value assumed for all the processes vs 
different values for each process. 

- Switch functions for the competition among electron acceptors/do
nors: adopted vs not adopted. 

A summary of the main assumptions of the selected mathematical 
models is shown in Table 1; complete growth rate formulations of each 
model is reported in Table S5 of the supplementary material. 

Each model was solved using the Gear numerical method in Matlab 
R2020B software (toolbox ode15s). Experimental biomass yields avail
able in (Polizzi et al., 2022) were used in all the models instead of the 
default values, with further assumptions derived in the thermodynamic 
study and described in section 3.1. Table S4 reports the stoichiometric 
matrix applied to all the models. 

2.4. Model comparison procedure 

The multi-step procedure shown in Fig. 1 and described in the next 
sections was implemented in order to evaluate models’ suitability to 
represent the observed data. 

- STEP 1. First, a sensitivity analysis was performed in order to assess 
the three most sensitive parameters of each model. The sensitivity 
analysis was a local analysis, i.e., the effect of each parameter over the 
simulated output variables was assessed varying each parameter by a 
10% increase and decrease, one at a time. The analysis was performed 
three times for every model, one for each experimental phase (see 
Table S1), to reach steady-state simulated outputs. Thus, the relative 
sensitivity (Sij) of a steady-state output θi with respect to a parameter γj 

was calculated according to Equation (5) (Reichert and Vanrolleghem, 
2001): 

Sij =
θi

γj

dγj

dθi
Eq. (5) 

The two output variables used for this analysis were nitrate NO3
−

(mgN/L) and nitrite NO2
− (mgN/L). Due to the uncertainties on the 

experimental data on the sulphur species (see section 2.1), the latter 
were not included in the sensitivity analysis nor in the objective function 
of the calibration procedure, but rather used for a qualitative validation 
of the calibrated models. The average of both sensitivity absolute values 
(±10%) was first calculated for each parameter and output. Then, the 
average of the values obtained per each of the two output variables was 
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calculated to obtain a single sensitivity value for each parameter and 
phase. Therefore, in each case a p x r sensitivity matrix was obtained, 
where p is the number of parameters analyzed and r is the number of 
experimental phases considered. 

- STEP 2. After performing the sensitivity analysis, the 3 most sen
sitive parameters (i.e., the parameters with the highest relative sensi
tivities) were selected for calibration. Parameter calibration was carried 
out by using the simplex search method of (Lagarias et al., 1998), which 

Table 1 
Summary of the mathematical models considered in this study. Default stoichiometric parameters were not used in the present study, see section 2.3.  

Model No. of 
kinetic 
parameters 

Substrate 
uptake kinetics 

Substrate 
affinities among 
processes 

Switch 
functions 

No. of 
stoichiometric 
parameters 

Experimental data 

Tot μmax Monod Haldane Constant 
value 

Non- 
constant 
value 

Non- 
competitive 
inhibition 

(Xu et al., 
2014) 

18 4 S0, 
NO3

− , 
NO2

− a 

S2− , 
NO2

− a 
– S2− , S0, 

NO3
− , NO2

−

NO3
− over 

NO2
−

NO2
− over 

NO3
− b 

1 Batch tests with autotrophic and/or heterotrophic 
denitrification. 

Mora et al. 
(2015a) 

12 4 S0, 
NO3

−

S2− , 
NO2

−

S2− , S0, 
NO3

− , 
NO2

−

– S2− over S0 1 Autotrophic denitrification in respirometric batch 
tests. 

(Hauduc 
et al., 
2019) 

11 2 c S0, 
NO3

−

S2− , 
NO2

−

S2− , S0 NO3
− , NO2

− S2− over S0 d 1 Literature review. 

(Xu et al., 
2016) 

5 1 S2− , 
NO3

− , 
NO2

−

None S2− , S0, 
NO3

− , 
NO2

−

– – 4 Autotrophic denitrification in a sequential batch 
reactor 

(Huo et al., 
2022) 

11 4 S2− , S0, 
NO3

− , 
NO2

−

None S2− , S0 NO3
− , NO2

− – 2 Autotrophic denitrification in batch tests from Cui. 
et al. (2019), and coupled autotrophic denitrification- 
Anammox in batch tests from Deng et al. (2021).  

a The Monod term for nitrite is only present in process 4. The Haldane term for nitrite is only present in process 2. Both Haldane terms use different inhibition 
constants for processes 1 and 2, and 2 and 4, for S2− and NO2

− ,respectively. 
b The switch term accounting for outcompetition of nitrate over nitrite is only present in process 3. The switch term for outcompetition of nitrite over nitrate is only 

present in process 1. 
c Each μmax and biomass/substrate yield value for each electron donor – uptake processes (S2− and S0). 
d The switch term accounting for outcompetition of sulphide over sulphur is only present in process 3. 

Fig. 1. Flow chart of the model comparison procedure. FIM refers to the Fisher Information Matrix while TIC refers to the Thiel Inequality Coefficient.  
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is included in Matlab by using the toolbox fminsearch. The fitting of the 
experimental data considered NO3

− (mgN/L) and NO2
− (mgN/L) to 

minimize the objective function (F) (Eq. (6)). Function F was defined as 
the sum of the norm of the differences between model predictions and 
the experimental data for each output variable y: 

F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

∑n

i=1

[
yexp,i− ymod,i

]2

√
√
√
√ Eq. (6)  

where m is the number of output variables, n is the number of experi
mental data, yexp,i is the experimental value and ymod,i is the predicted 
value. In order to avoid inconsistency of calibrated parameter values 
with empirical evidenced, the calibration was limited within an “con
sistency range”, whose upper and lower values were set according to 
literature. The assumed range for each parameter can be found in the 
supplementary material (Table S8). 

The fit of each calibrated model was quantitatively assessed through 
the Thiel Inequality Coefficient (TIC). This index is specifically appro
priate to compare different models and was calculated according to 
Equation (7) (Huiliñir et al., 2010): 

TIC=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i

(
yexp,i− ymod,i

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i
yexp,i

2

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i
ymod,i

2

√ Eq. (7) 

TIC values range between 0 and 1, being 0 a model output with no 
differences with the experimental data (i.e., a model with no errors in its 
predictions) and 1 the limit value when differences tend to be infinite. It 
is generally accepted to consider a maximum TIC of 0.3 as the threshold 
for a good fit of the modeling results (Hvala et al., 2005). 

Model identifiability was evaluated through the FIM (Fisher Infor
mation Matrix) methodology (Guisasola et al., 2006) in order to calcu
late the confidence intervals of the calibrated parameters. The FIM is a 
pxp matrix, where p is the number of parameters, that incorporates the 
sensitivity functions of the calibrated parameters and the error of the 
experimental measurements. It is particularly useful to evaluate model 
structures and their capacity to reduce uncertainty in their predictive 
responses, since the presence of misspecifications in a given model (e.g., 
inclusion of extraneous variables or omission of relevant variables) 
might lead to incorrect parameter estimations (Guisasola et al., 2006a; 
Quaglio et al., 2018).  

- STEP 3: The performance of the calibrated models was compared 
considering the goodness of fit of the modelled N species dynamics 
throughout the three experimental phases, in light of the results of 
step 2.  

- STEP 4. After evaluating the best-fitting models for this study, one 
last effort was done in order to evaluate whether further structure 
simplification was possible without hampering the stability of the 
model output. To do that, the methodology of Fig. 1 was applied 
again to the new simplified model versions. 

Moreover, beyond the analyzed models, an alternative 2-population 
modelling approach was investigated and results are presented in the 
supplementary material (see section S4). This parallel modelling effort 
falls out of the main scope of this study, but it is presented as an illus
trative and complementary approach that can be applied to simulate the 
population shift observed in Polizzi et al., 2022). 

3. Results and discussion 

3.1. Thermodynamic theoretical framework: exploring the boundaries of 
SOB yield factor 

Catabolic reactions for the possible intermediate steps in SO-NR 

process have been solved and results are presented in Table S2, 
whereas the full metabolic reactions are reported in tables S3a-b. Table 2 
reports a synthesis of the biomass yields derived for each catabolic step, 
under the two assumptions on energy dissipation and biomass compo
sition. Biomass yields (herein referred as Y) are reported both as C-mol/ 
S-mol and C-mol/e-mol (i.e. C-mole production per electron mole 
released during the ED oxidation). At each ED oxidation reaction, 
biomass yield, either as C-mol/S-mol or C-mol/e-mol, varies by 27–29%, 
depending on the TEA reduction reaction that is used in catabolism. 
Such a wide range is to be ascribed to the fact that 2 to 5 electrons can be 
accepted in the TEA reduction steps, thereby affecting the free Gibbs 
energy available from catabolism and, ultimately, the λCat determining 
the full metabolism stoichiometry (Kleerebezem and Loosdrecht, 2010). 
The last three rows of Table 2 summarize the Y values for each ED 
oxidation step, reporting average value and standard deviation, calcu
lated over the three possible TEA reduction cases. Considering biomass 
yields expressed as C-mol/S-mol, the values from the oxidation reaction 
HS− →S0 is almost half of the one obtained from the reaction S0→SO42−

and almost one third of the one from reaction HS− →SO42− , consistently 
with the fact that 2, 4 and 6 electrons are released in each reaction, 
respectively, as well as with previous results presented in the literature 
(Deng et al., 2021b; Mannucci et al., 2012a). Such an evidence is in line 
with the results of biomass yields normalized to the electron released at 
each corresponding ED oxidation step. All the yields as C-mol/e-mol, in 
fact, exhibit values of 0.23 and 0.47 C-mol/e-mol, for the assumption of 
3500 and 1500 kJ/C-mol, respectively. 

It can be easily observed that the hypothesis on the overall energy 
dissipation is much more relevant than the one on the biomass compo
sition, resulting in 50% of variation, if the two values of 3500 or 1500 
kJ/C-mol are considered. Indeed, only 1–2% variation is observed 
comparing the results from the two biomass compositions. In the 
biomass composition from (Savageau, 1984), CH1,8O0,5N0,2, the 
oxidation state of carbon is 0.2 and 4.2 e-mol/C-mol are required to the 
reduction of CO2 to biomass. In the biomass composition from Rittmann 
and McCarty (2001), CH1,4O0,4N0,2, the oxidation state of carbon is 
0 and 4 e-mol/C-mol are required instead. Thereby, it is reasonable that 
such a minor difference in electron requirement (0.2 e-mol/C-mol) im
plies a comparable requirement of electron donor in anabolism. 

Biomass yields available in literature have been evaluated and 
gathered according to the corresponding catabolic reaction considered 
in each work. Only works where sulphide or sulphur were used as 
electron donor were considered and results are summarized in Table 3. 
Nevertheless, the values reported by (Kleerebezem and Mendez, 2002) 
are considered as representative also of the experimental values using 
thiosulphate as electron donor, since the literature review presented by 
the authors encompasses works based on thiosulphate, sulphur and 
sulphide oxidation (coupled with denitrification) and anaerobic cellular 
yields on sulphide consumption are reported to be comparable with that 
on thiosulphate for T. denitrificans (Hoor and Cell, 1981). When the in
formation reported was sufficient, biomass yield unit conversion has 
been calculated for each study. Note that the use of granular or 
biofilm-based biomass in UASB-like reactors are often reported, but 
biomass concentration is rarely assessed. Thereby, many studies on 
denitrifying SOB could not be used in this literature review due to the 
lack of information on biomass growth. 

As presented in Tables 2 and 3, the biomass yields observed by 
(Polizzi et al., 2022) is among the lowest reported in literature. The 
theoretical yields derived under the two assumptions of energy dissi
pation, at all the SO-NR catabolic steps, are reported in tables S3a-b; it 
can be observed that the experimental yield of the reference study is 
close to the values obtained with the assumption of high energy dissi
pation. To the best of our knowledge, no other works report on biomass 
yields in process operating mainly (or exclusively) the denitratation 
step. (Klatt and Polerecky, 2015) report a study on SOB proposing a new 
theoretical approach to estimate microbial bioenergetics efficiency, 
based on the factorization of the metabolic aspects involved in energy 
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conversion and production. Specifically, for SOB bacteria, the energetic 
efficiency of the following aspects is considered: (i) energy production in 
the catabolic reaction, depending on the Sulphur metabolic pathway 
used by the microorganism; (ii) CO2 fixation cycles and (iii) electron 
donor consumption in RET for the reducing power to be produced (NAD 
(P)H, FADH2 or reduced Ferredoxin). Even though, such a new method 
is not implemented in the present study, it is of interest to highlight the 
underlying assumptions and conclusions proposed by the authors, since 
they clarify how the actual microbial bioenergetics also depends on the 
specific bacteria involved and the metabolic pathways adopted. It is 
remarkable to highlight that, in the reference study, energy optimization 
mechanisms are speculated to have promoted the population shift 

observed in the reference work, where energy-limiting conditions were 
determined by steady electron donor limitation. In line with such a 
consideration is the observed outcompetition of the more 
energy-efficient Thiobacillus genus over the Sulphurimnas genus (Klatt 
and Polerecky, 2015; Polizzi et al., 2022). 

3.2. Model implementation, sensitivity analysis and calibration results 

According to the study on the electron availability in the first and 
second step of HS− oxidation, the experimental biomass yield of 0.117 
g_biom/gS, observed over the complete HS− oxidation to SO4

− -, was 
proportionally recalculated for each oxidation step; such an approach is 

Table 2 
Main results from biomass yield study.   

ΔG01_met = 3500 kJ/Cmol ΔG01_met = 1500 kJ/Cmol 

C-mol_biom/S-mol C-mol_biom/e-mol C-mol_biom/S-mol C-mol_biom/e-mol 

CH1,8O0,5N0,2 CH1,4O0,4N0,2 CH1,8O0,5N0,2 CH1,4O0,4N0,2 CH1,8O0,5N0,2 CH1,4O0,4N0,2 CH1,8O0,5N0,2 CH1,4O0,4N0,2 

HS− → SO4
2- 

NO3
− → N2 

0.189 0.191 0.024 0.024 0.383 0.392 0.048 0.049 

HS− → SO4
2- 

NO2
− → N2 

0.228 0.231 0.028 0.029 0.452 0.463 0.056 0.058 

HS− → SO4
2- 

NO3
− → NO2

−

0,126 0,128 0,016 0,016 0.266 0.272 0.033 0.034 

HS− → S0 

NO3
− → N2 

0.050 0.050 0.025 0.025 0.101 0.103 0.050 0.052 

HS− → S0 

NO2
− → N2 

0.060 0.060 0.030 0.030 0.118 0.121 0.059 0.060 

HS− → S0 

NO3
− → NO2

−

0.034 0.035 0.017 0.017 0.072 0.074 0.036 0.037 

S0 → SO4
2- 

NO3
− → N2 

0.139 0.141 0.023 0.023 0.282 0.289 0.047 0.048 

S0 → SO4
2- 

NO2
− → N2 

0.168 0.171 0.028 0.028 0.334 0.342 0.056 0.057 

S0 → SO4
2− NO3

− → NO2
− 0.092 0.093 0.015 0.015 0.194 0.198 0.032 0.033 

HS− → SO4
2- 0.181 0.183 0.023 0.023 0.367 0.376 0.046 0.047 

HS− → S0 0.048 0.048 0.024 0.024 0.097 0.099 0.049 0.050 
S0 → SO4

− - 0.133 0.135 0.022 0.022 0.270 0.276 0.045 0.046 
HS¡ → SO4

2- 0.18 ± 0.05 0.023 ± 0.006 0.37 ± 0.09 0.046 ± 0.012 
HS¡ → S 0.05 ± 0.01 0.024 ± 0.006 0.10 ± 0.02 0.049 ± 0.012 
S → SO4

2- 0.13 ± 0.04 0.022 ± 0.006 0.27 ± 0.07 0.046 ± 0.012  

Table 3 
Literature and theoretical values for SOB yield factor.   

Y Reference Method 

1C-mol/ 
S-mol 

1C-mol/ 
e-mol 

g_biom/gS g_biom/gN 

HS¡→ SO4
2- 

NO3
¡→ N2 

0.512 0.064 0.378 0.635 (Sublette and Sylvester, 1987) Experimental 
0.333 0.042 0.256 0.451 Kleerebezem and Mendez, 

2002 
Review/Thermodynamics calculations 

0.511 0.064 0.361 0.694 Campos et al. (2008) – 
0.184 0.023 0.130 0.208 Can-Dogan et al. (2010) Thermodynamic calculationsb confirmed by experimental 

evidence 
0.465 0.058 0.328 0.610 Mora et al., 2014 Experimental 
0.156 0.019 0.118 0.149 Polizzi et al., 2022a Experimental 
0.189–0.383 0.023–.046 0.145–0.294 0.230–0.526 This studyc Thermodynamic calculations 

HS¡ →S0 

NO3
¡→ N2 

0.159 0.08 0.562  (Gadekar et al., 2006) Experimental and modelling 
0.046 0.023 0.032  Can-Dogan et al. (2010) Thermodynamic calculationsb confirmed by experimental 

evidence   
0.13–0.37  Xu et al., 2016 Experimental and modelling 

0.065 0.033 0.046 0.300 Mora et al., 2014c Experimental 
0.050–0.1 0.025–0.05 0.038–0.077 0.244–0.563 This studyc Thermodynamic calculations 

S0 → SO4
2- 

NO3
¡→ N2 

0.364 0.061 0.257 0.646 (Sahinkaya et al., 2011) – 
0.400 0.067 0.283 0.737 Mora et al., 2014c Experimental 
0.364 0.061 0.257 0.646 (Batchelor and Alonzo, 1978) Experimental   

0.21–0.38  Xu et al., 2014 Calibration on continuous experiment modelling  

a Estimated in a system performing PAD as the main reaction. 
b Free Gibbs energy method, under the hypothesis of ΔGDISS of 3500 kJ/C-mol. 
c Theoretical yield according to the free Gibbs energy change method, under the hypothesis of ΔGDISS of 3500 kJ/C-mol (lower limit) and 1500 kJ/C-mol (upper 

limit). 
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in line with yields reported in other works (Deng et al., 2021; Mannucci 
et al., 2012). The yields resulted in 0.029 g_biom/gS, for process 1 and 3, 
and 0.088 g_biom/gS, for process 2 and 4, and were adopted in each of 
the five model instead of their default value. 

3.2.1. Sensitivity analysis 
The results of the sensitivity analysis for each model are shown in 

Table S7. The parameters that showed higher sensitivities are directly 
involved in nitrate and nitrite reduction: maximum specific growth rates 
(μmax), semisaturation coefficients (ksNO3 and ksNO2) and inhibition 
constants (kiNO2 and kswitch). In the simulations related to the sensitivity 
analysis, simulated sulphide and elemental sulphur were barely 
observable throughout phases 1b and 2 (data not shown); thereby, semi- 
saturation coefficients and inhibition constants referring to sulphide and 
sulphur did not show any significant impact. Nevertheless, in phase 3 a 
general increase of parameter sensitivity was observed. According to 
(Polizzi et al., 2022), S0 accumulation probably occurred at this last 
phase and was likely related to the higher and less stable influent S/N, 
compared to the other phases. Consistently, the sensitivity of the pa
rameters involved in processes 3 and 4, such as semi-saturation co
efficients for S0, is higher in the 3rd phase (see Table S7). 

Noticeably some models showed, on average, higher sensitivity in 
their parameters than others. For instance (Hauduc et al., 2019), was the 
least sensitive model to its kinetic parameters, as a general behaviour. 
When looking at the default performance of this model, it was noticeable 
how steady-state values for nitrite were approaching a value of 0 under 
all three experimental phases. As a consequence of such limitation, most 
parameters did not show any significant effect over the simulated 
values; in fact, only 1 parameter displayed a sensitivity higher than 0.25 
in any of the 3 phases – which is considered the threshold for significant 
influence of a parameter over a variable (Cao et al., 2021). On the other 
hand (Xu et al., 2016), showed very high sensitivity (>3, on average) to 
its kinetic parameters and (Mora et al., 2015a) had a total of 9 param
eters with values higher than the 0.25 threshold in, at least, one phase, 
which suggested that the model was more sensitive to its parameters 
under the applied conditions. 

3.2.2. Parameter calibration and identifiability 
Dynamic calibration comprised the optimization of the three most 

relevant parameters of each model, using the experimental dataset from 
the full-operation of the reference study. Parameters’ calibrated values 
are shown in Table 4 along with their confidence regions calculated with 
the FIM. Results on the objective function and the TIC criteria are also 
provided in Table 4. 

As presented in Table 4, the goodness-of-fit among the different 
models was quite different as suggested by the wide range of the F 
values, from a value of 230–621. TICNO2 and TICNO3 are also a measure 

of how well the simulated data fits with the experimental dataset for 
nitrite and nitrate, respectively. Consistently, as shown in Table 4, the 
higher the F value of a given model, the higher the TIC values. The 
highest F and TIC values are observed by the models from (Hauduc et al., 
2019; Xu et al., 2016), both showing TICNO2 above the critical threshold. 
On the contrary, the lowest F and TIC values are observed for the models 
from (Mora et al., 2015a; Huo et al., 2022). In terms of F and TIC values, 
the model proposed by (Xu et al., 2014) showed intermediate values 
compared to the above-mentioned models, with the TICNO3 slightly 
below the critical threshold. Also noteworthy, optimized parameters 
with extreme values close to the limits set during calibration were ob
tained in those models where the goodness-of-fit was not satisfying (see 
Table S6), i.e., models by (Xu et al., 2016; Hauduc et al., 2019; Xu et al., 
2014). Regarding parameter identifiability, the models from (Mora 
et al., 2015a; Huo et al., 2022) showed the narrower range for the 
confidence interval for the three optimized parameters. 

3.2.3. Model assessment: analysis of fit, parameter identifiability and 
process rates 

Fig. 2 shows the N species profiles of each model, after calibration. A 
discussion on the outcomes on parameters’ calibration, goodness-of-fit 
and parametric identifiability is presented as a baseline for models’ 
comparison. 

Results on models’ accuracy were in agreement with the outcomes 
described in the previous section. Indeed, the calibrated models from 
(Xu et al., 2014; Mora et al., 2015a; Huo et al., 2022) were generally 
capable to represent NO2

− accumulation with good accuracy under the 
three experimental conditions (TICNO2 >0.14 all three models). On the 
contrary, the calibrated models from (Hauduc et al., 2019)) and of (Xu 
et al., 2016)) resulted in poorer fits for NO2

− (TICNO2 = 0.32 and TICNO2 
= 0.49, respectively), in all the three phases. Remarkably, all models 
showed a good representation of the volatile suspended solids (VSS) 
dynamics (see Fig. S2), which demonstrated the adequacy of the 
experimental biomass/substrate yields from (Polizzi et al., 2022). Also 
sulphate and elemental sulphur concentrations were in line with the 
experimental data (see Figs. S2 and S3). Specifically, elemental sulphur 
accumulation during phase 3 was predicted by the five models, in 
accordance with the experimental findings by (Polizzi et al., 2022). 

An in-depth analysis of the biomass growth rates, in process 1 to 4, 
has been conducted in order to better discern the reasons underlaying 
models’ outcomes discrepancies. Fig. 3 reports the average biomass 
growth rates from the 5 calibrated models, for processes 1 to 4, at each 
operational phase (Hauduc et al., 2019; Xu et al., 2016). showed high 
rates in the reduction step NO2

− →N2 (involved in processes 2 and 4), 
which appeared to limit NO2

− accumulation; the rate of process 4 was, on 
average, 4.6 and 6 times higher in (Hauduc et al., 2019; Xu et al., 2016), 
respectively, compared to the other three calibrated models. Process 4 

Table 4 
Models’ calibration outcomes: Optimum parameters’ value and their confidence regions, calculated with the FIM and presented in parenthesis, as absolute and relative 
value (%); objective functions values and the TIC values for NO2

− and NO3
− fits.  

Model Optimized parameters F value TICNO2 TICNO3 

(Xu et al., 2014) μmax,1 = 7.68 d− 1 

(±11.08) 
(±144.35%) 

μmax,3 = 0.72 d− 1 

(±0.002) 
(±0.3%) 

kswitch, NO2 = 190.41 mgN/L 
(±682.50) 
(±358.44%) 

314 0.13 0.27 

Mora et al. (2015a) μmax,3 = 2.17 d− 1 

(±0.01) 
(±0.67%) 

μmax,4 = 0.67 d− 1 

(±0.06) 
(±9.58%) 

kiNO2 = 102.43 mgN/L 
(±1.53) 
(±1.49%) 

225 0.10 0.18 

(Hauduc et al., 2019) μmax,2 = 1.64 d− 1 

(±0.003) 
(±0.19%) 

ksNO2, S0 = 110.00 mgN/L 
(±8.25) 
(±7.51%) 

ksNO2, HS = 110.00 mgN/L 
(±41.38) 
(±37.61%) 

458 0.32 0.16 

(Xu et al., 2016) ksNO2 = 109.93 mgN/L 
(±1.29) 
(±1.2%) 

μmax,1 = 6.78 d− 1 

(±9.77) 
(±144.1%) 

nS = 0.176 
(±10.03) 
(±5700%) 

621 0.49 0.31 

(Huo et al., 2022) KsS0 = 3.68 mgS/L 
(±0.64) 
(±17.46%) 

μmax,3 = 1.58 d− 1 

(±0.03) 
(±2.30%) 

μmax,4 = 0.09 d− 1 

(±0.003) 
(±3.70%) 

230 0.11 0.20  

E. Valdés et al.                                                                                                                                                                                                                                  



Chemosphere 339 (2023) 139605

8

was, overall, much slower than process 3 in all models that could 
effectively predict nitrite accumulation. This suggests a better capacity 
of nitrate to oxidize S0, which is in line with the findings of (Cai et al., 
2022; Li et al., 2021). In (Xu et al., 2016), the source of this limitation 
comes from the calibrated maximum specific growth rate (one single 
value, according to model structure), whose value was as high as μmax,1 
= 6.78 d− 1 (2.26 and 6 times higher than the average calibrated values 
for processes 2 and 4, respectively, see Table S6). The optimization 
procedure was likely constrained by a deficient capacity of the model to 
simulate NO3

− reduction, as a consequence of the low affinity for nitrite 
reported in that study (ksNO3 = 109 mgN/L, 2–3 orders of magnitude 
higher than the average reported values, see Table S6). It is worth 
mentioning that the uncertainty analysis performed in (Xu et al., 2016) 
revealed large confidence intervals (±95%) for the paired set of pa
rameters ksNO2-ksNO3 and ksNO3-ksHS. 

In the case of (Hauduc et al., 2019), the high affinity for S0 and the 
lack of a non-competitive terms for HS- over S0 resulted in a high rate of 
process 4 throughout all phases, as it can be observed in Fig. 3. As a 
result, the calibration phase in both models led to high values for the 
optimized values for ksNO2: 1–3 orders of magnitude higher than the 
average literature values (approaching the upper limit of 110 mgN/L). 

The model from (Xu et al., 2014) properly fits experimental data in 
phases 2 and 3, whereas in phase 1 all NO3

− was reduced to NO2
− , i.e., no 

NO3
− was observed as shown in Fig. 2. The reason of that comes from the 

calibrated μmax,1, with an optimized value 3 times higher than the 
average reported values (see Table S6), over-enhancing process 1 as a 

result; in this model, the rate of process 1 was 29% higher than the other 
models (see Fig. 3). Also, low NO2

− reduction rates led to its excessive 
accumulation in phase 1 (see Fig. 2). Furthermore, the wide confidence 
intervals for two out of three of the optimized parameters indicated a 
very high uncertainty of the calibrated parameters (Table 4). The cause 
of this misestimation was attributed to the different kinetic terms and 
parameters of the model. For instance, substrate inhibitions play a 
different role in the different processes: in the case of nitrite inhibition, a 
Haldane term is present in the growth rate formulation of process 2 but 
not in process 4, whereas in the case of sulphide inhibition, it is 
considerably stronger in process 2 than in process 1 (ki, HS,1 = 2053.2 
mgSL− 1 and ki, HS,2 = 1.38 mgSL− 1, see Table S6). Therefore, process 2 
was completely hindered (as can be seen in Fig. 3), consequently 
affecting the calibration outcomes. Nevertheless, the model was able to 
predict NO2

− accumulation under the experimental conditions of phases 
2 and 3, as confirmed by low values of TICNO2 and TICNO3. 

Both models from (Mora et al., 2015a; Huo et al., 2022) properly fit 
nitrate and nitrite profiles in the three experimental conditions, and the 
resulting confidence intervals of the estimated parameters were signif
icantly lower than in the other models (see Table 4). (Mora et al., 2015a) 
confidence intervals were all below ±10% while in (Huo et al., 2022), 
the confidence region for KsS0 was ±17.5%, which suggests a slightly 
worse parametric identifiability. The latter might be a consequence of 
two peculiarities of the model structure: (1) no inhibition is represented 
for any substrate, unlike (Mora et al., 2015a) where Haldane inhibitions 
are formulated for nitrite and sulphide; (2) the semi-saturation 

Fig. 2. Data fitting of the calibrated models on nitrate and nitrite: A) (Xu et al., 2014), B) (Mora et al., 2015a), C) (Hauduc et al., 2019), D) (Xu et al., 2016), E) (Huo 
et al., 2022). Vertical lines in bold delineate the three experimental phases (1, 2 and 3). 
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coefficients for N species were not sensitive because their default values 
are very low – between 0.1 and 0.21 mgN/L (Table S6) – and the varying 
affinities among processes are not relevant when using the model under 
this specific experimental dataset, where the concentration of both NO3

−

and NO2
− in the system are far above the semi-saturation coefficients. As 

a result, the model is highly dependent on a limited set of parameters, 
mainly the maximum specific growth rates (see Table S7), and it is not as 
identifiable as (Mora et al., 2015a). The importance of calibrating pa
rameters in high-sensitivity regions is highlighted by the fact that, 
among the optimized parameters of these two models, the ones that 
were less sensitive in phase 3 were also less identifiable (higher confi
dence regions). Therefore, a different selection procedure for parameter 
calibration with a stronger focus on phase 3 could have possibly 
improved both the goodness-of-fit and the parametric estimations. 

In light of the presented model-specific discussion (Mora et al., 
2015a), is suggested as the most suitable model structure to describe 
nitrite accumulation observed in (Polizzi et al., 2022). Specifically, this 

model achieved the best fit with the experimental data, along with (Huo 
et al., 2022); the goodness-of-fit was very similar in both models ac
cording to the obtained TIC values for NO3

− and NO2
− , but it is considered 

that the model from (Mora et al., 2015a) holds a more rigorous structure 
since it accounts for substrates’ inhibition and uptake competition, 
widely observed and reported in literature. Indeed, both nitrite and 
sulphide have been described as an inhibitor for denitrifying SOB cul
tures at different concentration ranges (Mora et al., 2015b). reported 
nitrite inhibition concentrations as low as 11.5 mgN/L in a 
non-acclimated culture, and as high as 75.4 mgN/L in 
previously-acclimated to nitrite biomass (Wang et al., 2022; Cai et al., 
2022). found nitrite to be inhibiting between 36 and 60 mgN/L (Fajardo 
et al., 2014), reported a Haldane nitrite inhibition constant of 34.7 
mgN/L and (Claus and Kutzner, 1985) observed nitrite inhibition at 
concentrations over 200 mgN/L. The calibrated inhibition constant for 
nitrite obtained in this work was kiNO2 = 102.43 mgN/L, which is about 
50% higher than the values generally reported in the literature. Possibly, 

Fig. 3. Average biomass growth rates for the different SO-NR processes (1–4), for each model and experimental phase.  
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biomass acclimation to the substrate hindered the inhibitory effect of 
nitrite. Moreover, the use of slightly basic conditions in the experimental 
setup (pH = 7.6) could have led to lower concentrations of free nitrous 
acid (FNA), generally accepted as the actual inhibitory form of nitrite 
(Zhou et al., 2011). High concentrations of sulphide – over 80 mgS/L – 
have also been reported to be inhibitory on autotrophic denitrification 
by many authors (Lan et al., 2019; An et al., 2010; Li et al., 2021; Lu 
et al., 2018; Fajardo et al., 2014); even though this Haldane term has 
little relevance in this specific case, since there is no sulphide accumu
lation, its inclusion is deemed relevant to simulate other experimental 
studies with a higher sulphide loading rate and/or S/N ratio. 

In conclusion, including substrate inhibition is considered a plus for 
the accuracy of the model, but the experimental data could be properly 
represented by means of standard Monod terms in the growth rate ex
pressions, as demonstrated by the calibration results of (Huo et al., 
2022). 

3.2.4. Exploring possible model simplifications 
An effort to simplify the ultimately selected model was performed. A 

sensitivity analysis and calibration procedure were again performed on 
(Mora et al., 2015; Huo et al., 2022). The following modification to the 
models were arbitrarily selected and implemented: the four μmax were 
grouped into two μmax; one for processes 1 and 2, and another one for 
processes 3 and 4, using the default μmax,1 and μmax,3, respectively. The 
results of this approach are shown in Table S9, and the obtained rep
resentation of NO2

− , and NO3
− by the calibrated modified models is 

shown in Fig. S1. 
Results show that (Mora et al., 2015), even with less parameters, 

could still represent the experimental data with good accuracy accord
ing to the resulting TIC for nitrite and nitrate, as well as the objective 
function. On the contrary, the modified version of (Huo et al., 2022) 
could not withstand the model simplification, and was not able to 
simulate experimental data properly, as can be observed in Fig. 4. 
Indeed, according to the sensitivity analysis (Table S7), the 
non-modified model from (Huo et al., 2022) relied strongly on μmax,3 and 
μmax,4 and the applied modifications strongly hampered its ability to 
represent nitrite accumulation. Moreover, the confidence regions ob
tained indicated a huge difference regarding parametric identifiability 
between the two models. Optimized parameters from (Huo et al., 2022) 
could not be accurately estimated because the model was remarkably 
depending on having 4 different μmax values in order to simulate this 
data, whereas (Mora et al., 2015) was still identifiable. This evidence 
further indicates that a more complete and robust structure in the latter 
made it more adequate to simulate the observed nitrite accumulation. 
Results obtained also demonstrate the feasibility of developing simpler 
models to describe the PAD process. 

4. Conclusions 

This work provides a theoretical framework on the biomass yields as 
well as a comprehensive study comparing and analysing available ki
netic models of SO-NR systems, with a specific focus on partial auto
trophic denitrification supported by experimental evidences. 

The theoretical framework on the biomass yield confirms that 
experimental values should be critically considered together with the 
specific conditions of the studied systems, due to the high variety of the 
involved SOB population and the strong influence of the operational 
conditions. Specifically, the low biomass yield estimated in the reference 
study on PAD is in line with the lower energy delivered in the catabolic 
reaction of partial nitrate reduction to nitrite (denitratation), and the 
comparison with theoretical values suggests that a high energy dissi
pation was involved. Moreover, it is speculated that energy constraints 
and energy optimization mechanisms are possibly behind the clear 
population shift observed. 

The critical application, calibration and comparison of 5 published 
models showed that PAD dynamics can be successfully described 

through different modelling approaches. Sensitivity analysis of the 
selected models showed specific growth rates to be crucial parameters, 
especially under S/N ratios close to 1 gS/gN. Nitrite accumulation could 
be accurately predicted either by Haldane-type and Monod-type kinetics 
for its uptake in biomass growth rates. Nevertheless, a more thorough 
analysis on models’ performance and parameters’ identifiability 
revealed that the model including non-competitive inhibition for nitrite 
uptake, i.e., Haldane saturation function, showed higher accuracy and 
identifiability. Furthermore, the latter approach was found to be 
consistent enough to withstand model simplification, remaining able to 
represent the experimental dataset preserving parametric identifiability. 

The reported results are considered a relevant contribution on the 
stoichiometry and kinetics governing the PAD process, especially in the 
perspective of process upscale and control. A better understanding of the 
PAD process, encompassing process bioenergetics and kinetics, allows to 
move step forwards its implementation in synergy with other innovative 
processes such as anammox or biogas biological removal of sulphide in 
innovative anoxic bioscrubbers. 
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